Plant Identity Influences Decomposition through More Than One Mechanism

نویسندگان

  • Jennie R. McLaren
  • Roy Turkington
چکیده

Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species identity influences belowground arthropod assemblages via functional traits

Plant species influence belowground communities in a variety of ways, ultimately impacting nutrient cycling. Functional plant traits provide a means whereby species identity can influence belowground community interactions, but little work has examined whether species identity influences belowground community processes when correcting for evolutionary history. Specifically, we hypothesized that...

متن کامل

Neighbour presence, not identity, influences root and shoot allocation in pea

Competition is a key feature that structures the composition of plant communities. A growing body of evidence is showing that the presence of neighbours, especially belowground neighbours, induces varied morphological responses in plants. However, in many species, it is not known whether neighbour identity also influences plant morphological responses such as biomass allocation patterns. To ass...

متن کامل

Ecosystem Functioning and Plant-Soil Interactions in Forests Influences of quality and diversity of resources

The aim of this thesis was to investigate the role of resources in driving ecosystem processes and in influencing soil-and plant communities in boreal and temperate forests, through four complementary experimental studies. In the first study, plant and soil microbial responses to the quality and diversity of added organic substrates from boreal forests were investigated. The substrate-diversity...

متن کامل

Group Identity and Pro-Social Punishment

Cooperation is important but difficult to achieve in social dilemmas. It is even more challenging to promote cooperation among individuals from diverse backgrounds. In this paper, we design a lab experiment to investigate how group identity influences cooperation and peer punishment under the voluntary contribution mechanism of public goods. Artificial groups are created in the lab through rand...

متن کامل

Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods

Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011